

A flexible readout circuit for SPAD arrays

Danial Chitnis and Steve Collins
Department of Engineering Science
University of Oxford
Oxford, UK
danial.chitnis@eng.ox.ac.uk

San Diego, July 2010

Outline

- Photodiode
- SPAD circuit
- 2D array floor plan
- Read-out circuit
- The results in different mode of operation
 - Linear mode
 - Logarithmic mode
 - Dual slope mode

Introduction

- A photodiode is reverse biased and has three main operation mode:
 - Normal: V_R is approximately zero
 - APD: V_R high but smaller than the breakdown voltage
 - SPAD: V_R is above the breakdown voltage (Geiger mode)
- The over-voltage is the difference between the applied and the breakdown voltages
- Photon counting is used to measure the intensity of the incident light by counting the number of detected photon in a specific time interval

The Photodiode

- The active junction is P+/N-Well
- To avoid premature breakdown we need to reduce high electrical field at junction edges and corners
- To avoid corners the photodiode is circular
- A P-Well guard ring reduces the doping concentration and hence electrical field

Radial cross section

The Photodiode

- Fabricated in a UMC CMOS 0.18 µm 1P6M triple-well (Deep-Nwell)
- Silicide is removed to improve the QE
- Results show that the breakdown voltage for these devices is 10.4 V

The SPAD circuit

- This circuit generates short pulses when a photon induces and avalanche event
- When an avalanche occurs the SPAD node is discharged
- Current source Mq has two roles:
 - limits the current to quench the SPAD
 - then recharges the SPAD node to its initial state
- Timing is controlled by V_{SPAD}
- Inverter serves two purpose:
 - sharpens up the output pulses
 - acts as an output buffer

Dark Count Rate

- The pulse count rate in the absence of light
- Contributing factors include:
 - Generation-recombination
 - Charge Traps
 - Tunnelling noise
- These mechanisms mean that the DCR increases with over-voltage

Photon Detection Probability

- The ratio of number of pulses to the expected number of incident photons
- Product of QE and avalanche probability
- Increases with over voltage
- Has a saturation limit
- Limit is 16% when measured using green LED (λ =570nm)

Optimum Overvoltage

- DCR and PDP both increase with overvoltage but at different rates
- If Vex is small, PDP is too low If Vex is large, DCR is too high
- SNR= μ/σ (@ 1.1 lux in 16ms)
 - μ: Average Number of events in integration time with average DCR deducted
 - σ: Overall photon shot noise and DCR shot noise
- Optimum Vex for this device is approximately 1.25V
- Experiments were performed with a Vex of 1.0V

Floor Plan for a 2D Array

- Floor plan for maximum density using the SPAD layout described by Andreou [2007]
- The available area between each SPAD is used to implement the read-out circuit
- A digital counter is too large to fit into this space
- An analogue circuit is designed to fit into this area
- For convenience the read-out circuit is similar to conventional pixels

The Pixel

- This circuit stores the number of counts in form of an analogue voltage
- At the beginning of each integration time, capacitor C_{MIM} is reset to VDD
- Ms is an NMOS switch which allows
 C_{MIM} to be discharged for a short
 period of time per pulse
- Md is a current source which limits the discharge current
- M_{iso} is the isolation PMOS device. Its gate voltage is hold to zero for linear mode of operation
- A source follower is used for readout

The Overall Pixel Circuit

The Results (Linear)

- Discharging of capacitor in linear mode
 - a: reset pulse
 - b:output voltage

- For clarity each step is approximately 140mV
- Starts from 2.0V: about 1V lost due to source follower
- End at 0.3V: minimum output of the source follower

The Results (Linear)

- Each photon caused a change in output voltage of 2mV.
- Dark count rate means that the voltage changes even in the dark
- The observed deviation for the ideal linear response is due to gate length modulation in the minimum length Md
- Can be corrected by making Md longer or by using a cascode device

Isolation Mode

- M_{iso} can be used to isolate the C_{MIM} node from source follower input
- M_{iso} turns off when $|V_{gs}| < |V_{th}|$
- In this case, when
 V_{CMIM} V_{ref}(t) < |V_{th}|
- V_{ref}(t) can be used by the user to control the pixel response
 - previously used to obtain a logarithmic response in a conventional CMOS pixel

The Pixel Response Results

- Initial tests using the V_{ref}(t) previously used to obtain a logarithmic response with a conventional CMOS pixel
- V_{ref}(t) is not optimised for this pixel
- As expected this results in a high dynamic range in a small voltage range
- However not the expected logarithmic response

Pixel Time Dependence

- Observe the operation of a pixel
 - a: reset pulse
 - b: $V_{ref}(t)$
 - c: pixel output

- Initial rapid change in pixel voltage during first ms as expected
- Rather than be isolated the voltage continues to change with a lower slope until it becomes almost constant

Results of Investigation

- Observe the operation of a pixel
 - a: reset
 - b: output $(V_{ref}=2V)$

- For this light intensity C_{MIM} fully discharged after 10ms.
- The unexpected behaviour is due to capacitive coupling between C_{MIM} and source follower input

Dual Slope Operation

- Opportunity to create a dual slope linear response
- V_{ref} controls the illumination at which the slope changes
- Test with V_{ref}=0.9V
- First slope is 0.78 V/lux
- Second slope 0.07 V/lux
- Result is increased dynamic range in comparison to linear mode

Conclusions

- A method of integrated wide dynamic range readout circuits between SPADs has been demonstrated
- A dual slope linear response has been obtained using a constant input reference voltage
- A wider dynamic range logarithmic response will be obtained when the input reference voltage is optimised for the circuit layout